Reference model of real-time systems
Chapter 3 of Liu

Michal Sojka

Czech Technical University in Prague,
FEE and CIIRC

September 20, 2022

Some slides are derived from lectures by Steve Goddard and James H. Anderson

1/29

Reference model of RT systems

In order to analyze a RT system/application, it is necessary to create its
model.

Main parts of RT system models

m Workload model describes the applications in the system.
m Resource model describes available system resources.

m Algorithms that define how the system resources are used.

2/29

Workload model

Outline

Workload model

3/29

Workload model

Real-Time Applications Categories

m Purely periodic
m Every task is released periodically
m Constant or almost constant demand for system resources
m Examples: digital controller, flight control, real-time monitoring
m Mostly periodic
m Most of the tasks are released periodically
m System has to respond to external asynchronous events
m Examples: modern avionics or control systems
m Asynchronous and predictable
m Most of the tasks are aperiodic
m Requirements for system resources can change dramatically for the consecutive task
activations, but there are limits known in advance or their statistical distribution is
known.
m Examples: multimedia communication, radar signal processing and tracking
facilities
m Asynchronous and non-predictable
m Most of the events are asynchronous
m Task with high level of complexity
m Examples: real-time control with artificial intelligence, real-time simulation, virtual
reality

4/29

Workload model
Job and task description

< >

Task 7, rj Job Jj; | dj [Job Jjji

01 2 3 45 6 7 8 9101112131415T'ime

m t = release time (rj); the job is released at time 3.

= + = absolute deadline (djj); the job has to be completed before
deadline; equal to 10 for this case.

m Relative deadline (Dy) is 7.

m Response time (Rj) is 6.

5/29

Workload model

Terminology — detail

m Task 71 A set of jobs executed in order to perform certain function in
the system, e.g. airplane stabilization.

m Job Jj: An instance of task.
m Jobs need resources.

m Examples of resources: CPU, network, critical section, shovel
m Resources that can perform some work are called processors.

m Release time rj: Time instant when a job is ready to be executed.
m Deadline djj: Time instant by which the job has to be finished.

m Relative deadline D;: Difference between deadline and release time.
m Response time Rj;: Completion time minus release time.

m Execution (computation) time Cj: Time needed to execute a job if
runs alone on a processor.

m Feasible interval of a job: Interval between rj; and dj;.

6/29

Workload model

Hard Real-Time Systems

m Hard Deadline is a deadline that has to be met under all
circumstances.
m If a hard deadline is missed, the behavior of the system is wrong and it
often has catastrophic consequences.
m We need mathematical apparatus for verifying that deadlines are met.
m But: “There is nothing like a hard deadline in the real world."
m Hard Real-Time System: is a real-time system, where all deadlines are
hard.
m This course is focused on hard real-time systems. They are easier to
analyze. Why?

m Examples: Nuclear power plant, aircraft control.

7/29

Workload model

Soft Real-Time Systems

m Soft Deadline (required completion time) can be missed occasionally.
m Question: How to define the term “occasionally”?

m Soft Real-Time System: a real-time system where all deadlines are
soft.

= Example: Multimedia applications, telephone exchanges (but what
about emergency calls?).

8/29

Workload model

Reference model of RT systems

Each job J; is characterized by its
® timing parameters,
m functional parameters,
m resource describing parameters and
m dependencies between individual jobs.

Each job J; has its release time r;, deadline d;, relative deadline D;,
computation time C; (often called execution time or worst-case
execution time, WCET).

m Occasionally, some parameters are defined as ranges. E.g
ri € <ri_, rl+> The size of the interval is called release-time jitter.

Similarly, execution time can be given as interval (C;, G').
m Determination of exact value of C; might be difficult. Why?

9/29

Workload model

Periodic, sporadic and aperiodic task models

m Periodic task model — deterministic workload model, well suited for
many hard real-time applications.
m Periodic task:

m Each task 7; has its period T;. Task 7; is composed of sequence of jobs.
m T;is minimal inter-arrival time between consecutive jobs.
m Task computation time is the maximum computation time among all
jobs of ;.
m Sporadic and aperiodic tasks — released at arbitrary times.

m Sporadic tasks have hard deadlines.
m Aperiodic tasks have no or soft deadlines.

10/29

Workload model

Liu vs. rest of the world

Beware!

m What Liu calls “periodic” the rest of the
world calls “sporadic”.

m For others period T; of task 7; means exact
time between activations of two
consecutively released jobs.

JRLILEALT S IA

0 I B

11/29

Workload model

Examples

Periodic task 7; with r; =2, T; =5, C;=2, D; = 5 can be executed like

this (continues until infinity).

4] £ 1 4

0123456 78 9101112131415161718

Legend: ! = job release time , ¥ = deadline.
According to Liu, this task can execute, for example, like this:

I N S A B

012345678 9101112131415161718 cas

The rest of the world calls this sporadic task.
12/29

Workload model

Some definitions for periodic task systems

Number of tasks is n.
The jobs of task 7; are denoted J;1, Jia, ..
®; = r;; (release time of J;1) is called the phase 7;.
m Synchronous system: Each task has phase of 0.
m Asynchronous system: Phases are arbitrary.
m What is more common?
Hyperperiod: Least common multiple of { Ty, ..., T,}.

m Task utilization: u; = =
T;

System utilization: U= Z uj

i=1,...,n

13/29

Workload model

Task/job dependencies

m Data flow and control dependencies between the jobs can constrain
the order in which the jobs can be executed.
m Two main types of dependencies:

m Mutual exclusion (critical sections)
m Precedence constraints — e.g.: Job J; can start only after another job

Ji finishes.
m Tasks without any dependency on other tasks are called independent.

m In the initial lectures, we will only consider independent tasks.
m Software tasks running under a (RT)OS are rarely independent.

14/29

Workload model

Job dependencies

m Precedence relation on a set of jobs is a relation, that determines
precedence constrains among individual jobs.

m Job J; is a predecessor of another job Jx (and Ji is successor of job
Ji), if Ji cannot be started before J; is finished.

m A job with predecessor is ready to be executed, when current time is
greater than its release time and all its predecessors are completed.

15/29

Workload model

Task graph

m Precedence graph — directed graph G = (J, <), where each node
represents a job from set J and if job J; is immediate predecessor of
Jk (relation <), there is a directed edge from node J; to node Jx.

m Data dependencies cannot be captured in the precedence graph.

m Task graph is an extended precedence graph. It can contain other
types of dependencies.

m Type of an edge connecting two nodes and other parameters of the
edge is called interconnection parameters of the jobs.

m Data dependencies are represented explicitly by data-dependency edges.
An interconnection parameter can be, for example, the amount of data
passed between the jobs.

m Task graphs are rarely used periodic-task systems.

16/29

Workload model
Task graph — example

(0, 6] (2,9] (4,11 (6,13 (8,15]
(2, 5] (5, 8] (8,11] (11, 14] (13,17]
(07 5] (47 8] (5’ 20] conditional block

branch

é/3 1/2

m Numbers above a job give its feasible interval.

17/29

Workload model

Other types of dependencies

Time dependency (distance) is difference of job completion times.

AND/OR precedence constraints — dependence among immediate job
predecessors.

m AND job — node J
m OR jobs — square nodes marked 2/3 a 1/2.
m Conditional branches represent conditional execution of jobs.
m Branch is a job represented by filled circles.
m Conditional block — subgraph starting in a branch node and ending at
next join job.
Pipe relation is dependency among a pair of jobs that are in
produce-consumer relation (dotted hrana).

18/29

Workload model

Functional parameters

Preemptivity of jobs
m Preemptive
m Non-preemptive

Criticality of jobs

Optional execution

Laxity type and laxity function

19/29

Resource model

Outline

Resource model

20/29

Resource model

Terminology

m Processors P; (active resources) execute machine instructions, move
data, read files etc.

(CPU, communication links, disks, database servers)

m Resources R; (passive resources) — additional resources needed by jobs
to perform their task (memory, mutexes, semaphores). By resources
we usually understand “reusable resources”.

= Non-reusable resource is, for example, Energy (power-aware
scheduling).

21/29

Resource model

Resource parameters

m Processors

m Speed of a processor
m Topology of CPU interconnect/network-on-chip

Preemptivity of resources (CPU, network, ...)
Memory hierarchy (caches, DRAMs, ...)

Resource graph

Wake-up delay from power-saving state

22/29

Algorithms

Outline

Algorithms

23/29

Algorithms

Scheduling algorithms

We are interested in two types of algorithms:

Scheduling algorithm, which produces the schedule of jobs (maybe at
runtime).

m In real-time systems, this algorithm is usually simple.

Schedulability analysis algorithm, which verifies whether all timing
constraints are met.

m This algorithm is typically more complex.

24/29

Algorithms

Classification of scheduling algorithms

(used in real-time systems)

Scheduling algorithms

N\

Off-line scheduling On-line scheduling
(static, clock-driven) (dynamic)

Deadline-driven ~ General purpose OS
scheduling scheduling
(EDF, ..) (fair, interactive, ...)

Static-priority scheduling
(VxWorks, SCHED_FIFO)

25/29

Algorithms

Feasibility and optimality

m A valid schedule is a feasible schedule if every job completes by its
deadline (or, in general, meets its timing constraints).

m A set of jobs 7 is schedulable according to scheduling algorithm A if
when using the algorithm scheduler always produces a feasible
schedule for 7.

m Hard real-time scheduling algorithm is optimal if the algorithm always
produces a feasible schedule if the given set of jobs has feasible
schedules.

m Similarly, we can define optimality for a class of schedulers — e.g..
“optimal scheduler for static priorities”.

26/29

Summary

Outline

Summary

27/29

Summary

Model of a real-time system

Comprises of the following parts:
Workload model
m Set of tasks/jobs and their parameters (C;, D;, resource dependencies,
etc.)
m Precedence graph or task graph
m etc.
Resource model
m Description of resources (CPU, memory, network, etc.), their types and
relations among them.
m Often: resource model is just “Uni-processor”.
Algorithms

m Fixed-priority scheduler + priority inheritance
m Off-line scheduler

28/29

Summary

Real-Time system model — example

l' — . - 1
~ - scheduling and -
— -

I R, resource-aceess control St |
I - - I
. -

e -

v - e - \
Hy rennines e e e i |TTTTTT I m e Y
1) 1 1
' | o Lo I:|:| ;
H 1 | 1
i ' i '
1) 1 1
1 I 1)
1 i | i
1 1 | 1
I \ H | !
1 I 1]
1) 1 1
1 I 1]
' | e | ! |
1 I 1 I
1 g | g
1) 1 1
L processors i i FEROUICES i

	Workload model
	Resource model
	Algorithms
	Summary

