
Mixing Real-Time and Non-Real-Time
Resource Reservation, Temporal Isolation

Michal Sojka

Czech Technical University in Prague,
FEE and CIIRC

December 4, 2024

Some slides are taken from lectures by Steve Goddard and James H. Anderson

1 / 76

Outline

1 Introduction

2 Scheduling servers in fixed-priority systems
Bandwidth-Preserving Servers

3 Scheduling servers in deadline-driven systems

2 / 76

Introduction

Outline

1 Introduction

2 Scheduling servers in fixed-priority systems
Bandwidth-Preserving Servers

3 Scheduling servers in deadline-driven systems

3 / 76

Introduction

Terminology & Goals

Open system A real-time system where a set of tasks and their parameters
is not known at design time.
Example: Future cars

Temporal isolation A property guaranteeing that task timing is not
influenced by behavior of other tasks. Resource reservation is
typically a part of solution for temporal isolation.

Resource reservation A way of guaranteeing availability of active resources
(e.g. CPU) to tasks even when we do not know what else
runs in our system.

Goals
Resource reservation mechanisms at real-time scheduling level.
Hardware-level problems (e.g. sharing of last-level cache in a
multi-core system) are out of scope.

4 / 76

Introduction

Terminology & Goals

Open system A real-time system where a set of tasks and their parameters
is not known at design time.
Example: Future cars

Temporal isolation A property guaranteeing that task timing is not
influenced by behavior of other tasks. Resource reservation is
typically a part of solution for temporal isolation.

Resource reservation A way of guaranteeing availability of active resources
(e.g. CPU) to tasks even when we do not know what else
runs in our system.

Goals
Resource reservation mechanisms at real-time scheduling level.
Hardware-level problems (e.g. sharing of last-level cache in a
multi-core system) are out of scope.

5 / 76

Introduction

Mixing RT and Non-RT Tasks in Priority-Driven Systems
Chapter 7 of Liu

We discussed mixing real-time and non-real-time (aperiodic) jobs in
cyclic scheduling (Slack stealing)
We now address the same issue in on-line schedulers
We first consider two straightforward scheduling algorithms for
periodic and aperiodic jobs.
Then we look at a class of algorithms called bandwidth-preserving
servers that schedule aperiodic jobs in a real-time system.

6 / 76

Introduction

Periodic and Aperiodic Tasks
Review of the terminology used by Liu

Periodic task: Ti is specified by (ϕi, pi, ei,Di).
pi is the minimum time between job releases.
Previous notation: Task τi is specified by (ϕi,Ti,Ci,Di).

Aperiodic tasks: non-real-time
Released at arbitrary times.
Have no deadline and ei is unspecified.

We assume periodic and aperiodic tasks are independent of each
other.

7 / 76

Scheduling servers in fixed-priority systems

Outline

1 Introduction

2 Scheduling servers in fixed-priority systems
Bandwidth-Preserving Servers

3 Scheduling servers in deadline-driven systems

8 / 76

Scheduling servers in fixed-priority systems

Correct and Optimal Schedules in mixed job systems
Terminology

A correct schedule never results in a deadline being missed by
periodic tasks.
A correct scheduling algorithm only produces correct schedules.
An optimal aperiodic job scheduling algorithm minimizes either

the response time of the aperiodic job at the head of the queue or
the average response time of all aperiodic jobs.

9 / 76

Scheduling servers in fixed-priority systems

Scheduling Mixed Jobs

We assume there are separate job queues for real-time (periodic) and
non-real-time (aperiodic) jobs.

Periodic jobs

Aperiodic jobs

How do we minimize response time for aperiodic jobs without
impacting periodic?

10 / 76

Scheduling servers in fixed-priority systems

Background Scheduling

Periodic jobs are scheduled using any priority-driven scheduling
algorithm.
Aperiodic are scheduled and executed in the background:

Aperiodic jobs are executed only when there is no periodic job ready to
execute.
Simple to implement and always produces correct schedules.

The lowest priority task executes jobs from the aperiodic job queue.
We can improve response times without jeopardizing deadlines by using
a slack stealing algorithm to delay the execution of periodic jobs as
long as possible.

This is the same thing we did with cyclic executives.
However, it is very expensive (in terms of overhead) to implement
slack-stealing in priority-driven systems.

11 / 76

Scheduling servers in fixed-priority systems

Simple Periodic Server
(Liu calls this a Polling server or the Poller)

Periodic jobs are scheduled using any priority-driven scheduling
algorithm.
Aperiodic are executed by a special periodic server:

The periodic server is a periodic task Tp = (ps, es).
es is called the execution budget of the server.
The ratio us = es/ps is the size of the server.

Suspends as soon as the aperiodic queue is empty or Tp has executed
for es time units (which ever comes first).

This is called exhausting its execution budget.
Once suspended, it cannot execute again until the start of the next
period.

That is, the execution budget is replenished (reset to es time units) at
the start of each period.
Thus, the start of each period is called the replenishment time for the
simple periodic server.

12 / 76

Scheduling servers in fixed-priority systems

Periodic Server with RM Scheduling
Example Schedule
Two tasks, T1 = (3, 1), T2 = (10, 4), and a periodic server
Tp = (ps, es) = (2.5, 0.5). Assume an aperiodic job Ja arrives at t = 0.1
with and execution time of ea = 0.8.

The periodic server cannot execute the job that arrives at time 0.1 since it
was suspended at time 0 because the aperiodic job queue was empty.

13 / 76

Scheduling servers in fixed-priority systems

Periodic Server with RM Scheduling
Example Schedule
Two tasks, T1 = (3, 1), T2 = (10, 4), and a periodic server
Tp = (ps, es) = (2.5, 0.5). Assume an aperiodic job Ja arrives at t = 0.1
with and execution time of ea = 0.8.

The periodic server executes job Ja until it exhausts its budget.

14 / 76

Scheduling servers in fixed-priority systems

Periodic Server with RM Scheduling
Example Schedule
Two tasks, T1 = (3, 1), T2 = (10, 4), and a periodic server
Tp = (ps, es) = (2.5, 0.5). Assume an aperiodic job Ja arrives at t = 0.1
with and execution time of ea = 0.8.

The response time of the aperiodic job Ja is 5.3.

15 / 76

Scheduling servers in fixed-priority systems

Improving the Periodic Server

The problem with the periodic server is that it exhausts its execution
budget whenever the aperiodic job queue is empty.

If an aperiodic job arrives ϵ time units after the start of the period, it
must wait until the start of the next period (ps − ϵ time units) before it
can begin execution.

We would like to preserve the execution budget of the polling server
and use it later in the period to shorten the response time of
aperiodic jobs:

Bandwidth-Preserving Servers do just this!

16 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

Bandwidth-Preserving Servers
Terminology

The periodic server is backlogged whenever the aperiodic job queue
is nonempty or the server is executing a job.
The server is idle whenever it is not backlogged.
The server is eligible for execution when it is backlogged and has an
execution budget (greater than zero).
When the server executes, it consumes its execution budget at the
rate of one time unit per unit of execution.
Depending on the type of periodic server, it may also consume all or a
portion of its execution budget when it is idle: the simple periodic
server consumed all of its execution budget when the server was idle.

17 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

Bandwidth-Preserving Servers

Bandwidth-preserving servers differ in their replenishment times and
how they preserve their execution budget when idle.
We assume the scheduler tracks the consumption of the server’s
execution budget and suspends the server when the budget is
exhausted or the server becomes idle.
The scheduler replenishes the servers execution budget at the
appropriate replenishment times, as specified by the type of
bandwidth-preserving periodic server.
The server is only eligible for execution when it is backlogged and
its execution budget is non-zero

18 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

Four Bandwidth-Preserving Servers

Deferrable Servers (1987)
Oldest and simplest of the bandwidth-preserving servers.
Static-priority algorithms by Lehoczky, Sha, and Strosnider.
Deadline-driven algorithms by Ghazalie and Baker (1995).

Sporadic Servers (1989)
Static-priority algorithms by Sprunt, Sha, and Lehoczky.
Deadline-driven algorithms by Ghazalie and Baker (1995).

Total Bandwidth Servers (1994, 1995)
Deadline-driven algorithms by Spuri and Buttazzo.

Constant Utilization Servers (1997)
Deadline-driven algorithms by Deng, Liu, and Sun.

19 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

Deferrable Server (DS)

Let the task TDS = (ps, es) be a deferrable server.
Consumption Rule:

The execution budget is consumed at the rate of one time unit per unit
of execution.

Replenishment Rule:
The execution budget is set to es at time instants kps, for k ∈ {0, 1,…}.
Note: Unused execution budget cannot be carried over to the next
period.

The scheduler treats the deferrable server as a periodic task that may
suspend itself during execution (i.e., when the aperiodic queue is
empty).

20 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

DS with RM Scheduling

Example Schedule: Two tasks, T1 = (3, 1), T2 = (10, 4), and a periodic
server TDS = (ps, es) = (2.5, 0.5). Assume an aperiodic job Ja arrives at
t = 0.1 with execution time of ea = 0.8.

DS with RM Scheduling

Example Schedule: Two tasks, T1 = (3,1), T2 = (10,4), and a

periodic server TDS = (ps, es) = (2.5,0.5). Assume an aperiodic job

Ja arrives at t = 0.1 with and execution time of ea = 0.8.

The DS can execute the job that arrives at time 0.1 since it

preserved its budget when the aperiodic job queue was empty.

21 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

DS with RM Scheduling

Example Schedule: Two tasks, T1 = (3, 1), T2 = (10, 4), and a periodic
server TDS = (ps, es) = (2.5, 0.5). Assume an aperiodic job Ja arrives at
t = 0.1 with execution time of ea = 0.8.

DS with RM Scheduling
(concluded)

Example Schedule: Two tasks, T1 = (3,1), T2 = (10,4), and a

periodic server TDS = (ps, es) = (2.5,0.5). Assume an aperiodic job

Ja arrives at t = 0.1 with and execution time of ea = 0.8.

The response time of the aperiodic job Ja is 2.7. It was 5.2

with the simple periodic server.

22 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

DS with RM Scheduling

Another example: Two tasks, T1 = (2, 3.5, 1.5), T2 = (6.5, 0.5), and a
periodic server TDS = (ps, es) = (3, 1). Assume an aperiodic job Ja arrives
at t = 2.8 with execution time of ea = 1.7.

DS with RM Scheduling

Another Example: Two tasks, T1 = (2,3.5,1.5), T2 = (6.5,0.5),

and a periodic server TDS = (ps, es) = (3,1). Assume an aperiodic

job Ja arrives at t = 2.8 with and execution time of ea = 1.7.

The response time of the aperiodic job Ja is 3.7.

23 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

DS with Background Scheduling

We can also combine background scheduling of the deferrable server
with RM.

For the deferrable server example task set, the response time doesn’t
change. Why?

Why complicate things by adding background scheduling of the
deferrable server?
Why not just give the deferrable scheduler a larger execution budget?
See the next slide!

24 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

DS with RM Scheduling Revisited

Modified Example: Two tasks, T1 = (2, 3.5, 1.5), T2 = (6.5, 0.5), and a
periodic server TDS = (ps, es) = (3, 1). Assume an aperiodic job Ja arrives
at t = 65 with execution time of ea = 3.

DS with RM Scheduling Revisited

Modified Example: Two tasks, T1 = (2,3.5,1.5), T2 = (6.5,0.5),

and a periodic server TDS = (ps, es) = (3,1). Assume an aperiodic

job Ja arrives at t0 = 65 with and execution time of ea = 3.

A larger execution budget for TDS would result in T1 missing a deadline.

Time t0 = 65 is a critical instant for this task set.

25 / 76

Scheduling servers in fixed-priority systems → Bandwidth-Preserving Servers

DS Punch Line

In both fixed-priority and deadline-driven systems, we see that the DS
behaves like a periodic task with parameters (ps, es) except it may
execute an additional amount of time in the feasible interval of any
lower priority job.
This is because, the bandwidth-preserving conditions result in a
scheduling algorithm that is non-work-conserving with respect to a
normal periodic task.
We want the server to behave as plain periodic task.

Solution: Sporadic Server, but it’s complex!

26 / 76

Sporadic Servers (SS)

Sporadic Servers (SS) were designed to overcome
the additional blocking time a DS may impose on
lower-priority jobs.

All sporadic servers are bandwidth preserving, but
the consumption and replenishment rules ensure
that a SS, specified a TS = (ps, es) never creates
more demand than a periodic (“real-world”
sporadic) task with the same task parameters.

Thus, schedulability of a system with a SS is
determined exactly as a system without a SS.

Sporadic Servers (SS)

We will look at two SS for fixed-priority systems
and one for deadline-driven systems.

They differ in complexity (and thus overhead) due
to different consumption and replenishment rules.

We assume, as with a DS, that the scheduler
monitors the execution budget of the SS.

However, in all cases schedulability conditions
remain unchanged from an equivalent system
without an SS.

Simple SS in a Fixed-Priority System
First some (new) terms:

Let T be a set of n independent, preemptable periodic tasks.

The (arbitrary) priority of the server TS in T is pS.

TH is the subset of tasks that have higher priority than TS.

T (TH) is idle when no job in T (TH) is eligible for execution.

• T (TH) is busy when it is not idle.

Let BEGIN be the instant in time when TH transitions from
idle to busy, and END be the instant in time when it becomes
idle again (or infinity if TH is still busy) .

• The interval (BEGIN, END] is a busy interval.

 tr is the last replenishment time of TS.

 tr is the next scheduled replenishment time of TS.

 te is the effective replenishment time of TS.

 tf is the first instant after tr at which TS begins to execute.

Simple SS in a Fixed-Priority System
Consumption Rule: at any time t after tr, TS consumes
its budget at the rate of one time unit per unit of
execution until the budget is exhausted when either

C1 TS is executing, or

C2 TS has executed since tr and END < t. (END < t TH is currently idle.)

Replenishment Rule: tr is set to the current time
whenever the execution budget is replenished with es

time units by the scheduler.
R1 Initially, tr = te = 0 and tr= ps (assuming the system starts at time 0).

R2 At time tf,

– if END = tf, te = max(tr, BEGIN).

– if END < tf, te = tf.

The next scheduled replenishment time is tr= te + ps.

R3 The next replenishment occurs at trexcept

(a) If tr< tf, then the budget is replenished as soon as it is exhausted.

(b) If T is idle before trand then begins a new busy interval at tb, then the
budget is replenished at min(tr, tb).

Simple SS with RM Scheduling
Example schedule: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TS = (5,1.5).

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 =

7 with ea1 = 2, and Ja3 arrives at t3 = 15.5 with ea3 = 2.

1.0

TS Budget

T1

T2

TS

T3

Simple SS with RM Scheduling
Example schedule: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TS = (5,1.5).

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 =

7 with ea2 = 2, and Ja3 arrives at t3 = 15.5 with ea3 = 2.

1.0

TS Budget

T1

T2

TS

T3

Simple SS with RM Scheduling
Example schedule: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TS = (5,1.5).

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 =

7 with ea1 = 2, and Ja3 arrives at t3 = 15.5 with ea3 = 2.

1.0

TS Budget

T1

T2

TS

T3

Simple SS with RM Scheduling
Example schedule: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TS = (5,1.5).

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 =

7 with ea1 = 2, and Ja3 arrives at t3 = 15.5 with ea3 = 2.

1.0

TS Budget

T1

T2

TS

T3

R3b

Simple SS with RM Scheduling
Example schedule: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TS = (5,1.5).

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 =

7 with ea1 = 2, and Ja3 arrives at t3 = 15.5 with ea3 = 2.

1.0

TS Budget

T1

T2

TS

T3

R3b R3b

Correctness of Simple SS

The Simple SS behaves exactly as a “real-world”
sporadic task except when Rule R3b is applied.

Rule R3b takes advantage of the schedulability
test for a fixed-priority periodic (“real-world”
sporadic) task set T.

We know that if the system T transitions from an idle
state to a busy interval, all jobs will make their
deadlines--even if they are all released at the same
instant (at the start of the new busy interval).

Thus Rule R3b replenishes the Simple SS at this instant
since it will not affect schedulability!

Enhancements to the Simple SS

We can improve response times of aperiodic jobs
by combining the Background Server with the
Simple SS to create a Sporadic/Background Server
(SBS).

Consumption Rules are the same as for the Simple
SS except when the task system T is idle.

As long as T is idle, the execution budget stays at es.

Replenishment Rules are the same as for the
Simple SS except Rule R3b.

The SBS budget is replenished at the beginning of each
idle interval of T. tr is set at the end of the idle interval.

Other Enhancements to the Simple SS

We can also improve response times of aperiodic
jobs by replenishing the server‟s execution budget in
small chunks during its period rather than with a
single replenishment of es time units at the end.

This adds to the complexity of the consumption and
replenishment rules, of course.

Sprunt, Sha, and Lehoczky proposed such a server:

The SpSL sporadic server preserves unconsumed chunks
of budget whenever possible and replenishes the consumed
chunks as soon as possible.

Thus, it emulates several periodic tasks with parameters
(ps, es,k) such that Ses,k = es.

SpSL in a Fixed-Priority System
Breaking of Execution Budget into Chunks:

B1 Initially, the budget = es and tr = 0. There is only one chunk of budget.

B2 Whenever the server is suspended, the current budget e, if not exhausted, is
broken up into two chunks.

• The first chunk is the portion consumed during the last server busy interval, e1.

– Its next replenishment time, tr1, is the same as the original chunk‟s: tr. The replenishment
amount will be e1.

• The second chunk is the remaining budget, e2.

– Its last replenishment time is tentatively set to tr2 = te, which will be reset if this budget is
used before tr1. Otherwise, the two chunks will be combined into one budget at time tr1.

Consumption Rules:

C1 The server consumes budgets (when there is more than one budget chunk) in
the order of their last replenishment times. That is, the budget with smallest tr is
consumed first.

C2 The server consumes its budget only when it executes.

Replenishment Rules: The next replenishment time of each chunk of
budget is set according to rules R2 and R3 of the simple SS. The
budget chunks are combined whenever they are replenished at the
same time (e.g. R3b).

SpSL Rules R2 and R3

Replenishment rules R2 and R3 from the Simple SS:

R2 At time tf,

• if END = tf, te = max(tr, BEGIN).

• if END < tf, te = tf.

The next scheduled replenishment time is tr= te + ps.

R3 The next replenishment occurs at trexcept

(a) If tr< tf, then the budget is replenished as soon as it is exhausted.

(b) If T is idle before trand then begins a new busy interval at tb, then

the budget is replenished at min(tr, tb).

Notice that when R3b applies, all budget chunks will

be combined into a single budget again.

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

Note: Liu‟s Example is

missing this execution!

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

Note: Liu‟s Example is

missing this execution!

R3b

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

R3b

SpSL with RM Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and TSpSL = (5,1.5). Assume

an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at t2 = 7 with ea1 = 2,

and Ja3 arrives at t3 = 15.5 with ea3 = 2. Plus job Ja4 arrives at t4 = 6.5 with ea4 = 0.5

1.0

TSpSL Budget

T1

T2

TSpSL

T3

R3b R3b R3b

Enhancing the SpSL Server

We can further improve response times of aperiodic
jobs by combining the SpSL with the Background
Server to create a SpSL/Background Server.

Try to write precisely the consumption and replenishment
rules for this server!

We can also enhance the SpSL by using a technique
called Priority Exchanges.

When the server has no work, it trades time with an
executing lower priority task.

See Liu for details.

Scheduling servers in deadline-driven systems

Outline

1 Introduction

2 Scheduling servers in fixed-priority systems
Bandwidth-Preserving Servers

3 Scheduling servers in deadline-driven systems

50 / 76

Aperiodic Job Servers for

Deadline-Driven Systems
The Total Bandwidth Server (TBS) was created by
Spuri and Butazzo (RTSS „94) to schedule

 aperiodic task whose arrival time was unknown but

whose worst-case execution time (wcet) was known.

A trivial admission control algorithm used with the TBS can
also schedule sporadic jobs (aperiodic jobs whose wcet and
deadline is known).

The constant utilization server was created by Deng,
Liu, and Sun (Euromicro Workshop „97) to schedule

 aperiodic task whose arrival time was unknown but

whose wcet and deadline was known.

However, they also wanted to schedule aperiodic jobs with no
deadlines and whose wcet was unknown.

This server is almost the same as the TBS.

Aperiodic Job Servers for

Deadline-Driven Systems

Liu‟s presentation of the constant utilization
server and the TBS is poorly motivated and
nearly unintelligible.

You should read the papers, they make more
sense than the material in the book.

We will first cover the TBS and then the
constant utilization server since it may be
easier to understand the value of the constant
utilization server when they are presented in
this order.

Total Bandwidth Server (TBS)
One way to reduce the response time of aperiodic jobs
whose wcet is known in a deadline-driven system is to

 allocate a fixed (maximum) percentage, US, of the processor
to the serve aperiodic jobs, and

make sure the aperiodic load never exceeds this maximum
utilization value.

When an aperiodic job comes in, assign it a deadline such
that the demand created by all of the aperiodic jobs in any
feasible interval never exceeds the maximum utilization
allocated to aperiodic jobs.

This approach is the main idea behind the TBS.

Note: We use US to denote the server size (as Spuri and
Buttazzo do) rather than ũs as Liu does.

TBS in Deadline-Driven Systems
Let TB be a TBS of size US in a task system T scheduled
with EDF. Thus, the server is allocated US percent of the total
processor bandwidth.

The server is ready for execution only when it is backlogged.

 In other words: the server is only suspended when it is idle.

Consumption Rule: When executing, TB consumes its
budget at the rate of one time unit per unit of execution until
the budget is exhausted.

Replenishment Rule:

R1 Initially, the execution budget es = 0 and the server‟s deadline ds = 0.

R2 At time t when aperiodic job Ji with execution time ei arrives and the
server is idle, set ds = max(ds, t) + ei/US and es = ei. If the server is
backlogged, no nothing.

R3 When the server completes the currently executing aperiodic job, Ji,

(a) If the server is backlogged, the server deadline is set to ds = ds + ei /US

and es = ei .

(b) If the server is idle, do nothing.

TBS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), but US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

TB Budget

TB

T1

T2

T3

Ja1

arrives

at t1=3

TBS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), but US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

TB Budget

TB

T1

T2

T3

15

Ja2

arrives

at

t2=6.9

TBS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), but US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

TB Budget

TB

T1

T2

T3

23

Ja3

arrives

at t3=14

TBS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), but US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

TB Budget

TB

T1

T2

T3

Sporadic jobs and the TBS

Recall that a sporadic job is like an aperiodic job
except it has a hard deadline.

Assume each sporadic job Ji has a release time ri, wcet
ei, and a relative deadline Di: Ji = (ri, ei, Di)

The TBS assigns deadlines such that the
(absolute) deadline di assigned any job Ji is

di = max(ri, di –1) + ei/US where d0=1.

Thus the TBS can guarantee the deadlines of all
accepted sporadic jobs if it only accepts job Ji+1 if
ri+1+ Di+1 di+1 and rejects it otherwise.

Periodic, Aperiodic, and Sporadic Jobs

In some systems, we may want to support all three
types of jobs: periodic, aperiodic, and sporadic.

The TBS can do this by accepting all aperiodic
jobs and only accepting a sporadic job if its
deadline can be met.

But there is no value in completing sporadic jobs
before their deadline, which the TBS will do.

Thus Deng, Liu, and Sun created the constant
utilization server (CUS).

Note: We can schedule sporadic jobs with the CUS and
aperiodic jobs with the TBS in the same system.

CUS in Deadline-Driven Systems
Let CU be a CUS of size US in a task system T scheduled with EDF.

As with the TBS, the server is ready for execution only when it is
backlogged.

 Thus, the server is only suspended when the server is idle.

Consumption Rule: When executing, CU consumes its budget at the
rate of one time unit per unit of execution until the budget is
exhausted.

Replenishment Rule:

R1 Initially, the execution budget es = 0 and the server‟s deadline ds = 0.

R2 At time t when aperiodic job Ji with execution time ei arrives and the server is
idle

(a) If t < ds, do nothing;

(b) If t ds, ds = t + ei/US and es = ei.

R3 At the deadline ds of the server,

(a) If the server is backlogged, update the server deadline and budget:

ds = ds + ei /US and es = ei .

(b) If the server is idle, do nothing.

CUS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

CU Budget

CU

T1

T2

T3

Ja1

arrives

at t1=3

CUS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

CU Budget

CU

T1

T2

T3

Ja2

arrives

at

t2=6.9

CUS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

CU Budget

CU

T1

T2

T3

Ja2

arrives

at

t2=6.9

CUS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

CU Budget

CU

T1

T2

T3

Ja3

arrives

at

t3=14
do nothing!

CUS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

CU Budget

CU

T1

T2

T3

Ja3

arrives

at

t3=14

CUS with EDF Scheduling
Same task set: T1 = (3,0.5), T2 = (4,1), T3 = (19,4.5), and US = 0.25.

Assume an aperiodic job Ja1 arrives at t1 = 3 with ea1 = 1, Ja2 arrives at

t2 = 6.9 with ea1 = 2, and Ja3 arrives at t3 = 14 with ea3 = 2.

2.0

1.0

CU Budget

CU

T1

T2

T3

Comments on the CUS

Deadlines and replenish amounts are the same in
both servers.

The main difference between the CUS and the TBS
is that the CUS never replenishes the server‟s budget
early.

Thus, the TBS actually yields better average
response times for aperiodic jobs (and it was created
before the CUS…)

Moreover, it would appear that the TBS may be able
to accept more sporadic jobs than the CUS.

The value of the CUS is not clear, and Liu does a
terrible job arguing for it!

TBS and CUS Summary

Both servers can be modified to support the case
when the wcet of aperiodic jobs is unkown:

 fix the execution budget at some value es and assume the
server has a period of es/US.

Both servers can be modified to “reclaim unused
resources” when the actual execution time e is less
than the wcet es that we assumed:

 reduce the current deadline of the server by (es–e)/US units
before replenishing the budget.

We can have multiple TBS/CUS servers as long as
the total processor utilization/density is not greater
than 1.

Readings

Liu‟s book:

Chapter 7, Section 1: Introduction.

Chapter 7, Section 2: Deferrable servers.

Chapter 7, Section 3: Sporadic servers.

Chapter 7, Section 4: Constant utilization and

total bandwidth servers. (We will skip weighted

fair queuing, since we are covering

proportional-share scheduling, which is similar.)

Scheduling servers in deadline-driven systems

Other notes

It is possible to remove the “restriction” of knowing execution times
of aperiodic jobs. How?
Non-preemptible version of TBS is called virtual clock algorithm and
is often used in scheduling of packets in switched networks.

71 / 76

Scheduling servers in deadline-driven systems

Fairness and Starvation

Fairness of the scheduling algorithm:
The fraction time of processor time in the interval attained by each
server that is backlogged throughout the interval is proportional to
the server size.
For many applications (e.g., data transmission in switched networks),
fairness is important.
TBS is unfair! See examples on next slides.
CUS is fair.
Fair version of TBS is called weighted fair-queueing.

72 / 76

Scheduling servers in deadline-driven systems

Fairness of TBS

UTBS1
= 0.5, UTBS2

= 0.5, ei = 2

TBS1

TBS2

TBS1

TBS2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

73 / 76

Scheduling servers in deadline-driven systems

Fairness of TBS

UTBS1
= 0.5, UTBS2

= 0.5, ei = 2

TBS1

TBS2

TBS1

TBS2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

74 / 76

Scheduling servers in deadline-driven systems

Fairness of CUS

UCUS1
= 0.5, UCUS2

= 0.5, ei = 2

CUS1

CUS2

CUS1

CUS2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

75 / 76

Scheduling servers in deadline-driven systems

Constant Bandwidth Server

Implemented in Linux as SCHED_DEADLINE scheduling policy.
Abeni and Buttazzo, 1998
Similar to TBS and CUS, but limits the task execution even in case of
task overruns (i.e., estimated WCET < actual WCET)

Usage: one task per server (TBS and CUS can serve multiple different
tasks)

designed for multimedia applications
sporadic (hard) tasks
soft tasks: mean execution, interarrival times, not fixed
periodic tasks

assign maximum bandwidth of CPU to each soft task
handles overload of aperiodics

limited by assigned bandwidth
might slow down the task, but not impair other tasks

EDF based
76 / 76

	Introduction
	Scheduling servers in fixed-priority systems
	Bandwidth-Preserving Servers

	Scheduling servers in deadline-driven systems

